Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Infect Dis ; 127: 116-123, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2240879

ABSTRACT

OBJECTIVES: With the uptake of COVID-19 vaccines, there is a need for population-based studies to assess risk factors for COVID-19-related hospitalization after vaccination and how they differ from unvaccinated individuals. METHODS: We used data from the British Columbia COVID-19 Cohort, a population-based cohort that includes all individuals (aged ≥18 years) who tested positive for SARS-CoV-2 by real-time reverse transcription-polymerase chain reaction from January 1, 2021 (after the start of vaccination program) to December 31, 2021. We used multivariable logistic regression models to assess COVID-19-related hospitalization risk by vaccination status and age group among confirmed COVID-19 cases. RESULTS: Of the 162,509 COVID-19 cases included in the analysis, 8,546 (5.3%) required hospitalization. Among vaccinated individuals, an increased odds of hospitalization with increasing age was observed for older age groups, namely those aged 50-59 years (odds ratio [OR] = 2.95, 95% confidence interval [CI]: 2.01-4.33), 60-69 years (OR = 4.82, 95% CI: 3.29, 7.07), 70-79 years (OR = 11.92, 95% CI: 8.02, 17.71), and ≥80 years (OR = 24.25, 95% CI: 16.02, 36.71). However, among unvaccinated individuals, there was a graded increase in odds of hospitalization with increasing age, starting at age group 30-39 years (OR = 2.14, 95% CI: 1.90, 2.41) to ≥80 years (OR = 41.95, 95% CI: 35.43, 49.67). Also, comparing all the age groups to the youngest, the observed magnitude of association was much higher among unvaccinated individuals than vaccinated ones. CONCLUSION: Alongside a number of comorbidities, our findings showed a strong association between age and COVID-19-related hospitalization, regardless of vaccination status. However, age-related hospitalization risk was reduced two-fold by vaccination, highlighting the need for vaccination in reducing the risk of severe disease and subsequent COVID-19-related hospitalization across all population groups.


Subject(s)
COVID-19 , Humans , Aged , Adolescent , Adult , Aged, 80 and over , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Cohort Studies , SARS-CoV-2 , Risk Factors , British Columbia/epidemiology , Vaccination , Hospitalization
2.
Clin Infect Dis ; 2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2230798

ABSTRACT

BACKGROUND: In late 2021, the Omicron SARS-CoV-2 variant emerged and rapidly replaced Delta as the dominant variant globally. The increased transmissibility of the variant led to surges in case rates as well as increases in hospitalizations, however, the true severity of the variant remained unclear. We aimed to provide robust estimates of Omicron severity relative to Delta. METHODS: This study was conducted using a retrospective cohort design with data from the British Columbia COVID-19 Cohort - a large provincial surveillance platform with linkage to administrative datasets. To capture the time of co-circulation with Omicron and Delta, December 2021 was chosen as the study period. We included individuals diagnosed with Omicron or Delta infection, as determined by whole genome sequencing (WGS). To assess the severity (hospitalization, ICU admission, length of stay), we conducted adjusted Cox proportional hazard models, weighted by inverse probability of treatment weights (IPTW), accounting for age, sex, underlying comorbidities, vaccination, sociodemographic status, and geographical variation. RESULTS: The cohort was composed of 13,128 individuals (7,729 Omicron and 5,399 Delta). There were 419 COVID-19 hospitalizations, with 118 (22%) among people diagnosed with Omicron (crude rate = 1.5% Omicron, 5.6% Delta). In multivariable IPTW analysis, Omicron was associated with a 50% lower risk of hospitalization compared to Delta (aHR = 0.50; 95%CI = 0·43-0.59), a 73% lower risk of ICU admission (aHR = 0.27; 95%CI = 0.19-0.38), and a 5 days shorter hospital stay on average (aß=-5.03; 95% CI=-8.01, -2.05). CONCLUSIONS: Our analysis supports findings from other studies demonstrating lower risk of severe outcomes in Omicron-infected individuals relative to Delta.

3.
J Med Virol ; 95(1): e28423, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173203

ABSTRACT

The SARS-CoV-2 variant Omicron emerged in late 2021. In British Columbia (BC), Canada, and globally, three genetically distinct subvariants of Omicron, BA.1, BA.2, and BA.5, emerged and became dominant successively within an 8-month period. SARS-CoV-2 subvariants continue to circulate in the population, acquiring new mutations that have the potential to alter infectivity, immunity, and disease severity. Here, we report a propensity-matched severity analysis from residents of BC over the course of the Omicron wave, including 39,237 individuals infected with BA.1, BA.2, or BA.5 based on paired high-quality sequence data and linked to comprehensive clinical outcomes data between December 23, 2021 and August 31, 2022. Relative to BA.1, BA.2 cases were associated with a 15% and 28% lower risk of hospitalization and intensive care unit (ICU) admission (aHRhospital = 1.17; 95% confidence interval [CI] = 1.096-1.252; aHRICU = 1.368; 95% CI = 1.152-1.624), whereas BA.5 infections were associated with an 18% higher risk of hospitalization (aHRhospital = 1.18; 95% CI = 1.133-1.224) after accounting for age, sex, comorbidities, vaccination status, geography, and social determinants of health. Phylogenetic analysis revealed no specific subclades associated with more severe clinical outcomes for any Omicron subvariant. In summary, BA.1, BA.2, and BA.5 subvariants were associated with differences in clinical severity, emphasizing how variant-specific monitoring programs remain critical components of patient and population-level public health responses as the pandemic continues.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , British Columbia/epidemiology , SARS-CoV-2/genetics , Cohort Studies , Phylogeny , COVID-19/epidemiology
4.
BMJ Open ; 12(10): e064804, 2022 10 05.
Article in English | MEDLINE | ID: covidwho-2053222

ABSTRACT

OBJECTIVES: To assess the extent to which protection of healthcare workers (HCWs) as COVID-19 emerged was associated with economic inequality among and within countries. DESIGN: Cross-sectional analysis of associations of perceptions of workplace risk acceptability and mitigation measure adequacy with indicators of respondents' respective country's economic income level (World Bank assessment) and degree of within-country inequality (Gini index). SETTING: A global self-administered online survey. PARTICIPANTS: 4977 HCWs and healthcare delivery stakeholders from 161 countries responded to health and safety risk questions and a subset of 4076 (81.2%) answered mitigation measure questions. The majority (65%) of study participants were female. RESULTS: While the levels of risk being experienced at the pandemic's onset were consistently deemed as unacceptable across all groupings, participants from countries with less income inequality were somewhat less likely to report unacceptable levels of risk to HCWs regarding both workplace environment (OR=0.92, p=0.012) and workplace organisational factors (OR=0.93, p=0.017) compared with counterparts in more unequal national settings. In contrast, considerable variation existed in the degree to which mitigation measures were considered adequate. Adjusting for other influences through a logistic regression analysis, respondents from lower middle-income and low-income countries were comparatively much more likely to assess both occupational health and safety (OR=10.91, p≤0.001) and infection prevention and control (IPC) (OR=6.61, p=0.001) protection measures as inadequate, despite much higher COVID-19 rates in wealthier countries at the time of the survey. Greater within-country income inequality was also associated with perceptions of less adequate IPC measures (OR=0.94, p=0.025). These associations remained significant when accounting for country-level differences in occupational and gender composition of respondents, including specifically when only female care providers, our study's largest and most at-risk subpopulation, were examined. CONCLUSIONS: Economic inequality threatens resilience of health systems that rely on health workers working safely to provide needed care during emerging pandemics.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Female , Health Personnel , Humans , Male , Pandemics/prevention & control , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL